Ocean sequestration of crop residue carbon: recycling fossil fuel carbon back to deep sediments.
نویسندگان
چکیده
For significant impact any method to remove CO2 from the atmosphere must process large amounts of carbon efficiently, be repeatable, sequester carbon for thousands of years, be practical, economical and be implemented soon. The only method that meets these criteria is removal of crop residues and burial in the deep ocean. We show here that this method is 92% efficient in sequestration of crop residue carbon while cellulosic ethanol production is only 32% and soil sequestration is about 14% efficient. Deep ocean sequestration can potentially capture 15% of the current global CO2 annual increase, returning that carbon backto deep sediments, confining the carbon for millennia, while using existing capital infrastructure and technology. Because of these clear advantages, we recommend enhanced research into permanent sequestration of crop residues in the deep ocean.
منابع مشابه
Decarbonization and Sequestration for Mitigating Global Warming
Mitigating the global warming greenhouse effect while maintaining a fossil fuel economy, requires improving efficiency of utilization of fossil fuels, use of high hydrogen content fossil fuels, decarbonization of fossil fuels, and sequestering of carbon and CO2 applied to all the sectors of the economy, electric power generation, transportation, and industrial, and domestic power and heat gener...
متن کاملEffects of fuel and forest conservation on future levels of atmospheric carbon dioxide.
We develop a numerical simulation of the global biogeochemical cycles of carbon that works over time scales extending from years to millions of years. The ocean is represented by warm and cold shallow water reservoirs, a thermocline reservoir, and deep Atlantic, Indian, and Pacific reservoirs. The atmosphere is characterized by a single carbon reservoir and the global biota by a single biomas...
متن کاملSoil carbon sequestration impacts on global climate change and food security.
The carbon sink capacity of the world's agricultural and degraded soils is 50 to 66% of the historic carbon loss of 42 to 78 gigatons of carbon. The rate of soil organic carbon sequestration with adoption of recommended technologies depends on soil texture and structure, rainfall, temperature, farming system, and soil management. Strategies to increase the soil carbon pool include soil restorat...
متن کاملFate of fossil fuel carbon dioxide and the global carbon budget.
The fate of fossil fuel carbon dioxide released into the atmosphere depends on the exchange rates of carbon between the atmosphere and three major carbon reservoirs, namely, the oceans, shallow-water sediments, and the terrestrial biosphere. Various assumptions and models used to estimate the global carbon budget for the last 20 years are reviewed and evaluated. Several versions of recent atmos...
متن کاملDirect experiments on the ocean disposal of fossil fuel CO2
Field experiments were conducted to test ideas for fossil fuel carbon dioxide ocean disposal as a solid hydrate at depths ranging from 349 to 3627 meters and from 8 degrees to 1.6 degrees C. Hydrate formed instantly from the gas phase at 349 meters but then decomposed rapidly in ambient seawater. At 3627 meters, the seawater-carbon dioxide interface rose rapidly because of massive hydrate forma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental science & technology
دوره 43 4 شماره
صفحات -
تاریخ انتشار 2009